Fault-Tolerant Termination Detection with Safra’'s Algorithm

Georgios Karlos Wan Fokkink Per Fuchs

g.karlos@vu.nl w.j.fokkink@vu.nl per.fuchs@cs.tum.edu

OETYS

May 2021

VRIJE Technische
V U UNIVERSITEIT Universitéat
A®° AMSTERDAM Miinchen

1/13

g.karlos@vu.nl
w.j.fokkink@vu.nl
per.fuchs@cs.tum.edu

Termination Detection

® Detect the completion of a computation

® Non-trivial in a distributed setting
[EWD 687a][Francez’80]

® Global state / Local views
® Requires distributed protocol

2/13

Termination Detection

® Detect the completion of a computation

® Non-trivial in a distributed setting
[EWD 687a][Francez’80]

® Global state / Local views
® Requires distributed protocol

® Applications
® Workpools (work-stealing, load-balancing, ...)
® Distr. algorithms (routing, self-stabilization, ...)

2/13

Termination Detection

® Detect the completion of a computation
° Stable property [Chandy’80]

® Non-trivial in a distributed setting ® O(E) per snapshot, FIFO

[EWD 687a][Francez’80]

® Global state / Local views
® Requires distributed protocol

® Applications
® Workpools (work-stealing, load-balancing, ...)
® Distr. algorithms (routing, self-stabilization, ...)

2/13

Termination Detection

® Detect the completion of a computation
° Stable property [Chandy’80]

® Non-trivial in a distributed setting ® O(E) per snapshot, FIFO
[EWD 687a][Francez’80]
® Global state / Local views ® Safra’s Algorithm (ewo oo
® Requires distributed protocol ® O(N) time
Applicati ® O(N) messages
[)
pplications e No FIFO
® Workpools (work-stealing, load-balancing, ...) o No ACKs

® Distr. algorithms (routing, self-stabilization, ...)

2/13

Preliminaries

® Basic vs. Control algorithm/message — Detectee vs. Detector

3/13

Preliminaries

® Basic vs. Control algorithm/message — Detectee vs. Detector

System Model

® |/ processes

® Async message-passing

No global clock or shared memory

® Messages may arrive in any order

Delays unbounded but finite

3/13

Preliminaries

® Basic vs. Control algorithm/message — Detectee vs. Detector

System Model

® N processes internal

. terminate
® Async message-passing

No global clock or shared memory Passive

® Messages may arrive in any order

Delays unbounded but finite

3/13

Preliminaries

® Basic vs. Control algorithm/message — Detectee vs. Detector

System Model

® N processes internal

® Async message-passing

No global clock or shared memory Passive

® Messages may arrive in any order

Delays unbounded but finite

Termination

All processes are passive and no (basic) messages are in transit

3/13

Safra,s Algonthm Based on the version from

Ring Overlay

® Process i: count; — #sent — #recv

Token t: count; — accumulates count;

® @passive; — termination or forward t

Looking for count; =0

4/13

Safra,s Algonthm Based on the version from

® Ring Overlay

® Process i: count; — #sent — #recv

® Token t: count; — accumulates count;
® @passive; — termination or forward t

® | ooking for count: = 0, but...

4/13

Safra,s Algonthm Based on the version from

® Ring Overlay

® Process i: count; — #sent — #recv

® Token t: count; — accumulates count;
® @passive; — termination or forward t
® | ooking for count: = 0, but...

4/13

Safra,s Algonthm Based on the version from

® Ring Overlay

® Process i: count; — #sent — #recv

® Token t: count; — accumulates count;
® @passive; — termination or forward t

® | ooking for count: = 0, but...

NG B RRREN
OO O—0—@-
See- 271 +1 777

4/13

Safra,s Algonthm Based on the version from

® Ring Overlay
® Process i: count; — #£sent — F#recv
® Token t: count; — accumulates count;

® @passive; — termination or forward t

® | ooking for count: = 0, but...

® count; inconsistent at [k,i — 1] and p

4/13

Safra,s Algonthm Based on the version from

® Ring Overlay
® seq;: distinguish visited/unvisited by t

[) i . —_
Process i: count; — ffsent — ffrecv seqm: the senders sequence number

® Token t: count; — accumulates count;

® @passive; — termination or forward t

® | ooking for count: = 0, but...

® count; inconsistent at [k,i — 1] and p

4/13

Safra,s Algonthm Based on the version from

® Ring Overlay
) ® seq;: distinguish visited/unvisited by t
o . . —
Process i: count; — ffsent — ffrecv seqm: the senders sequence number

¢ Token t: count: — accumulates count; ® black;: receiver blackens the sender

® @passive; — termination or forward t black:: token accumulates black;

® | ooking for count: = 0, but...

® count; inconsistent at [k,i — 1] and p

4/13

Safra,s Algonthm Based on the version from

® Ring Overlay
) ® seq;: distinguish visited/unvisited by t
o . . —
Process i: count; — ffsent — ffrecv seqm: the senders sequence number

¢ Token t: count: — accumulates count; ® black;: receiver blackens the sender

® @passive; — termination or forward t black:: token accumulates black;

® | ooking for count: = 0, but...

® black; = j:
i knows that count is inconsistent
at least until j's count is read

® black:: max black; so far

® count; inconsistent at [k,i — 1] and p

4/13

Safra’s Algorithm

send;(m):

recv;(m, j):

recv;(t):

5/13

Safra’s Algorithm

send;(m):
count; ++
seqm <— seqj

recv;(m, j):

recv;(t):

5/13

Safra’s Algorithm

send;(m):
count; ++
seqm <— seqj

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
blackj <— max;(black;, j)

recv;(t):

5/13

Safra’s Algorithm

send;(m):
count; ++
seqm <— seqj

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
blackj <— max;(black;, j)

recv;(t):
wait passive;

5/13

Safra’s Algorithm

send;(m):
count; ++
seqm <— seqj

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
blackj <— max;(black;, j)

recv;(t):
wait passive;
county += count;
black; < max;(black;, blacky)

5/13

Safra’s Algorithm

send;(m):
count; ++
seqm <— seqj

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
blackj <— max;(black;, j)

recv;(t):
wait passive;
county += count;
black; < max;(black;, blacky)
if blackj N\ county = 0: Announce

5/13

Safra’s Algorithm

send;(m):
count; ++
seqm <— seqj

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
blackj <— max;(black;, j)

recv;(t):

wait passive;

county += count;

black; < max;(black;, blacky)

if blackj N\ county = 0: Announce

else:
send blacks < max;(black;, succ;)
black; + i, count; +— 0

5/13

Safra’s Algorithm Example

send;(m):
count; ++
seqm <— seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
black; +— max;(black;, j)

recv;(t):

wait passive;

county += count;

black; < max;(black;, blacky)

if blackj N\ county = 0: Announce

else:
send blacks < max;(black;, succ;)
black; < i, count; < 0

state: p;(seq;, black;, count;), t(blacke, countt)

5/13

Safra’s Algorithm Example

send;(m):
count; ++
seqm <— seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
black; +— max;(black;, j)

recv;(t):

wait passive;

county += count;

black; < max;(black;, blacky)

if blackj N\ county = 0: Announce

else:
send blacks < max;(black;, succ;)
black; < i, count; < 0

state: p;(seq;, black;, count;), t(blacke, countt)

5/13

Safra’s Algorithm Example

send;(m):
count; ++
seqm <— seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
black; +— max;(black;, j)

recv;(t):

wait passive;

county += count;

black; < max;(black;, blacky)

if blackj N\ county = 0: Announce

else:
send blacks < max;(black;, succ;)
black; < i, count; < 0

state: p;(seq;, black;, count;), t(blacke, countt)

5/13

Safra’s Algorithm Example

send;(m):
count; ++
seqm <— seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
black; +— max;(black;, j)

recv;(t):

wait passive;

county += count;

black; < max;(black;, blacky)

if blackj N\ county = 0: Announce

else:
send blacks < max;(black;, succ;)
black; < i, count; < 0

state: p;(seq;, black;, count;), t(blacke, countt)

5/13

Safra’s Algorithm Example

send;(m):
count; ++
seqm <— seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seqj Nj > i
black; < max;(black;, j)

recv;(t):

wait passive;

county += count;

black; +— max;(black;, blacky)

if blackj N\ county = 0: Announce

else:
send blacks < max;(black;, succ;)
black; < i, count; <— 0

state: p;(seq;, black;, count;), t(blacke, countt)

5/13

Safra’s Algorithm Example

send;(m):
count; ++
seqm <— seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
black; <— max;(black;, j)

recv;(t):

wait passive;

county += count;

black; < max;(black;, blacky)

if blackj N\ county = 0: Announce

else:
send blacks <— max;(black;, succ;)
black; < i, count; <— 0

state: p;(seq;, black;, count;), t(blacke, countt)

5/13

Safra’s Algorithm Example

send;(m):
count; ++
seqm < seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
black; < max;(black;, j)

recv;(t):

wait passive;

county += count;

black; <— max;(black;, black:)

if black; A\ count; = 0: Announce

else:
send blacky < max;(black;, succ;)
black; < i, count; - 0

state: pj(seq;, black;, count;), t(blacke, county)

5/13

Safra’s Algorithm Example

send;(m):
count; ++
seqm <— seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
black; <— max;(black;, j)

recv;(t):

wait passive;

county += count;

black; < max;(black;, blacky)

if blackj N\ county = 0: Announce

else:
send blacks <— max;(black;, succ;)
black; < i, count; <— 0

state: p;(seq;, black;, count;), t(blacke, countt)

1,1,2 1,3,0

5/13

Safra’s Algorithm Example

state: p;(seq;, black;, count;), t(blacke, countt)
send;(m):
count; ++
seqm <+ seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seqi Nj > i
blackj <— max;(black;, j)

recv;(t):

wait passive;

county += count;

blackj <— max;(black;, black:)

if black; A count; = 0: Announce

else:
send black: < max;(black;, succ;)
black; < i, count; <— 0

5/13

Safra’s Algorithm Example

send;(m):
count; +-+
seqm < seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seq; Nj > i
blackj +— max;(black;, j)

recv;(t):

wait passive;

county += count;

black; < max;(black;, blackt)

if black; A\ count; = 0: Announce

else:
send blacky <— max;(black;, succ;)
black; < i, count; <— 0

state: p;(seq;, black;, count;), t(blacke, countt)

5/13

Safra’s Algorithm Example

state: p;(seq;, black;, count;), t(blacke, countt)
send;(m):
count; ++
seqm <+ seq;

recv;(m, j):
count; ——
if seqm > seq; V seqm = seqi Nj > i
blackj <— max;(black;, j)

recv;(t):

wait passive;

county += count;

blackj <— max;(black;, black:)

if black; A count; = 0: Announce

else:
send black: < max;(black;, succ;)
black; < i, count; <— 0

5/13

Fault-Tolerance

System Model

® Spontaneous and permanent failures

® No Byzantine failures

Reliable channels

At all times, V;; 3 i <— j channel

6/13

Fault-Tolerance

System Model

® Spontaneous and permanent failures ® Perfect failure detector [wittaros)

® No Byzantine failures ® Local. Monitors status of others

Impl. by heartbeats and timeouts
Introduces some synchrony assumptions
sync mechanism with async interface

® Reliable channels

® At all times, V;; 3 i <— j channel

6/13

Fault-Tolerance

System Model

® Spontaneous and permanent failures ® Perfect failure detector [wittaros)

® No Byzantine failures ® Local. Monitors status of others

Impl. by heartbeats and timeouts
Introduces some synchrony assumptions
sync mechanism with async interface

® Reliable channels

® At all times, V;; 3 i <— j channel

Termination

1. All alive processes are passive, and

2. For all messages in transit, either the sender or the receiver has crashed

6/13

Fault-Tolerant Algorithm

® Ignore messages to/from crashed processes
Disregard the counts involved, potentially retroactively

® Maintain the ring & keep the token going
Each process is responsible for its successor

Backup token to new successor

® Agreement on the set of crashed processes
Must know which counts to accumulate/discard

Share local knowledge of crashes through t

7/13

Fault-Tolerant Algorithm

® counti[N]: count each process separately
® Ignore messages to/from crashed processes _—
® count:[N]: track contributions separately

Disregard the counts involved, potentially retroactively O i Estiiten —> cor(E@enit)
1

® No in-flight msg — sum(count;) =0

® Maintain the ring & keep the token going
Each process is responsible for its successor

Backup token to new successor

® Agreement on the set of crashed processes
Must know which counts to accumulate/discard

Share local knowledge of crashes through t

7/13

Fault-Tolerant Algorithm

® counti[N]: count each process separately
® |Ignore messages to/from crashed processes _—
® count:[N]: track contributions separately

Disregard the counts involved, potentially retroactively O i Estiiten —> cor(E@enit)
1

® No in-flight msg — sum(count;) =0

¢ Maintain the ring & keep the token going
Each process is responsible for its successor

Backup token to new successor

® Agreement on the set of crashed processes
Must know which counts to accumulate/discard

Share local knowledge of crashes through t

7/13

Fault-Tolerant Algorithm

® |Ignore messages to/from crashed processes
Disregard the counts involved, potentially retroactively

¢ Maintain the ring & keep the token going
Each process is responsible for its successor

Backup token to new successor

® Agreement on the set of crashed processes
Must know which counts to accumulate/discard

Share local knowledge of crashes through t

counti[N]: count each process separately
count:[N]: track contributions separately
i's contribution — sum(count;)

No in-flight msg — sum(count;) = 0

Update succ; to next alive
Multiple tokens in flight
seqs: increment when succ; < i

Only treat tokens with seq: = seq; + 1

7/13

Fault-Tolerant Algorithm

® |Ignore messages to/from crashed processes
Disregard the counts involved, potentially retroactively

® Maintain the ring & keep the token going
Each process is responsible for its successor

Backup token to new successor

e Agreement on the set of crashed processes
Must know which counts to accumulate/discard

Share local knowledge of crashes through t

counti[N]: count each process separately
count:[N]: track contributions separately
i's contribution — sum(count;)

No in-flight msg — sum(count;) = 0

Update succ; to next alive
Multiple tokens in flight
seqs: increment when succ; < i

Only treat tokens with seq: = seq; + 1

7/13

Fault-Tolerant Algorithm

® counti[N]: count each process separately

® |gnore messages to/from crashed processes
g g / P ® count:[N]: track contributions separately

Disregard the counts involved, potentially retroactively O i Estiiten —> cor(E@enit)
1

® No in-flight msg — sum(count;) =0

® Maintain the ring & keep the token going ® Update succ; to next alive
Each process is responsible for its successor ® Multiple tokens in flight
Backup token to new successor ® seq:: increment when succ; < i

® Only treat tokens with seq; = seq; + 1

® CRASHED:: global view
® CRASHED;: (past) local view
® REPORT;: local updates

® On crash: Force t to visit everyone

®* Agreement on the set of crashed processes
Must know which counts to accumulate/discard

Share local knowledge of crashes through t

7/13

Fault-Tolerant Algorithm

failure; (j):

recv;(t):

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; + REPORT; U {j}

recv;(t):

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):
if seqt # seq; + 1: return

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):
if seqt # seq; + 1: return
wait passive;

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):
if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):
if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):
if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor()

CRASHED; + CRASHED; U REPORT;
blacks <+ i

recv;(t):
if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E count!
j¢ CRASHED; b

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):
if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sumj <— Z countj
j& CRASHED; t

if sum; = 0: Announce

8/13

Fault-Tolerant Algorithm

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):
if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

8/13

Fault-Tolerant Algorithm Example

failure; (j):

REPORT; <+ REPORT; U {j}

if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):

if seqt # seq; + 1: return

wait passive;

CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

0,0,[0,0,0,0]
L {0

0,1 0,3
[0,0,0,0] [0,0,0,0]
2,{h{ KON

0,2,(0,0,0,0]
2,4 {

8/13

Fault-Tolerant Algorithm Example

failure; (j):

REPORT; <+ REPORT; U {j}

if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):

if seqt # seq; + 1: return

wait passive;

CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

0,0,[0,0,1,0]
L4 {}

0,1 0,3
[0,0,0,0] [0,0,0,0]
2,{1{} 0, {}{}

0,2,[0,0,0,0]
33.{

8/13

Fault-Tolerant Algorithm Example

failure; (j):

REPORT; <+ REPORT; U {j}

if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):

if seqt # seq; + 1: return

wait passive;

CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

1,0,(0,0,1,0]
L{h{}

(1,3,[1,0,0,0, {})

0,1 0,3
[0,0,0,0] [0,0,0,0]
2,{h{} 0, {: {3

0,2,(-1,0,0,0]
ER

8/13

Fault-Tolerant Algorithm Example

failure; (j):

REPORT; <+ REPORT; U {j}

if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):

if seqt # seq; + 1: return

wait passive;

CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

1,0,(0,0,1,0]
L{L{

1,1 0,3
[0,0,0,0] [0,0,0,0]
244 0.4 {3

(1,3,(1,0,0,0},{})

0,2,[-1,1,0,1]
3 {

8/13

Fault-Tolerant Algorithm Example

failure; (j):

REPORT; <+ REPORT; U {j}

if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):

if seqt # seq; + 1: return

wait passive;

CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

1,0,(0,0,1,0]
L{L{

1,1 0,3
0,0,-1,0] 0,0,-1,0]
2,{hL{} 0, {h{}

(1,3,[1,0,0,0], {})

0,2,(-1,1,0,1]
3434

8/13

Fault-Tolerant Algorithm Example

failure; (j):

REPORT; <+ REPORT; U {j}

if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):

if seqt # seq; + 1: return

wait passive;

CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

1,0,[0,0,1,0]
L{h{}

1,1 0,3
1,0,0,1] 0,0,—1,0]
2,{h{ o {h{}

s

(1,3,[1,0,0,0,{})

0,2,[~1,1,0,1]
.

8/13

Fault-Tolerant Algorithm Example

failure; (j):

REPORT; <+ REPORT; U {j}

if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):

if seqt # seq; + 1: return

wait passive;

CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

1,1,[0,-1,1,0]
L{:{}

1,1 0,1
[1,0,0,1] [0,-1,-1,0]
2,{hL{} 0. {3

\

(1,3,[1,0,0,0],{})

0,2,(-1,1,0,1]
344

8/13

Fault-Tolerant Algorithm Example

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor() 1,1,[0,-1,1,0]
CRASHED; + CRASHED; U REPORT; b0 =L
blacke +— i L8

recv;(t): o

if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;

CRASHED; < CRASHED; U CRASHED; 11 01
REPORT; < REPORT; \ CRASHED; (1,0,+ 1] (0,~1,%,0]
count, <— ZjQCRASHED,- count{ 3,{}, {2} 0,{},{2}
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce

if REPORT; # 0: (L1050 {2)
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i

else:
blacks < max;(black;, succ;)

8/13

Fault-Tolerant Algorithm Example

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

failure; (j):
REPORT; <+ REPORT; U {j}
if j = succ;:
succ; < NewSuccessor() 1,1,00,-1,1,1]
CRASHED; + CRASHED; U REPORT; b10 =1,
blacke +— i L0

recv;(t):
if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;

(2,1,[1,0,%,—1],{2})

\

CRASHED; +— CRASHED; U CRASHED:; 1,1 1,3

REPORT; <+ REPORT; \ CRASHED; [L,0,%1] [0,-1,%,0]
: ;

count] = . ¢ crasep, O] 3,{1,{2} 0.{21 0}

if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

8/13

Fault-Tolerant Algorithm Example

failure; (j):

REPORT; <+ REPORT; U {j}

if j = succ;:
succ; < NewSuccessor()
CRASHED; <+ CRASHED; U REPORT;
blacks <+ i

recv;(t):

if seqt # seq; + 1: return

wait passive;

CRASHED; < CRASHED: \ CRASHED;
CRASHED; <+~ CRASHED; U CRASHED;
REPORT; +— REPORT; \ CRASHED:

counté — E . count!
j¢ CRASHED; b
if black; = i:

sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),

t(seq¢, blacks , county, CRASHED)

2,0,[0,-1,%,1]

/\1, 2h{

(2,1,[0,0,%,—1],{2})

1,1
[1,0,%,1]
3,{h{2}

1,3
[-1,-1,%,0|
0,{2}, {}

8/13

Fault-Tolerant Algorithm Example

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

failure; (j):
REPORT; < REPORT; U {j}
if j = succ;:
succ; < NewSuccessor() 2,0,[0,—1,%,1]
CRASHED; + CRASHED; U REPORT; o
blackt +— i Lz {}

recv;(t):
if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;

CRASHED; +— CRASHED; U CRASHED:; 2,1 1,3
REPORT; +— REPORT; \ CRASHED: [1,0,%,1] [-1,-1,%,0]
counti = > coasten, U 3,2}, {} 0.{2},{}

if black; = i:
SUDAS qu CRASHED; count; &

CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i

else:
blacks < max;(black;, succ;)

8/13

Fault-Tolerant Algorithm Example

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)
failure; (j):
REPORT; «+ REPORT; U {j}

if j = succ;:
succ; < NewSuccessor() 2,001, w1
CRASHED; + CRASHED; U REPORT; 5 Uy [Uy =4y %y
black; i L{2h{}
recv;(t):

if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;

CRASHED; +— CRASHED; U CRASHED:; 2,1 1,3
REPORT; +— REPORT; \ CRASHED: [1,0,%,1] [—1,-1,%,0]
counti = > coasten, U 52,0} 0,42}, {}
if black; = i:

) (2,3,[0,2,0,-2],{2})
sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce

if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i

else:
blacks < max;(black;, succ;)

8/13

Fault-Tolerant Algorithm Example

state: p;(seq;, black;, count;, succ;, CRASHED;, REPORT;),
t(seq¢, blacks , county, CRASHED)

failure; (j):
REPORT; < REPORT; U {j}
if j = succ;:
succ; < NewSuccessor() 2,0,[0,—1,%,1]
CRASHED; + CRASHED; U REPORT; R
blackt +— i L2 i

recv;(t):
if seqt # seq; + 1: return
wait passive;
CRASHED; < CRASHED: \ CRASHED;

CRASHED; +— CRASHED; U CRASHED:; 2,1 1,3
REPORT; +— REPORT; \ CRASHED: [1,0,%,1] [-1,-1,%,0]
counti = > coasten, U 3,025 0,2}, {}
if black; = i:

; (23,0,20,-2,(2) of
sum; <— Z/QCRASHED,- countJt
if sum; = 0: Announce
if REPORT; # 0:
CRASHED; +— CRASHED: U REPORT;
CRASHED; < CRASHED; U REPORT;
REPORT; + 0
blacky <+ i
else:
blacks < max;(black;, succ;)

8/13

Fault-Tolerance Cost

1. O(N) token size

® Potentially lower impact because only passive nodes forward it
® Stable storage assumption — O(1) token size

9/13

Fault-Tolerance Cost

1. O(N) token size

® Potentially lower impact because only passive nodes forward it
® Stable storage assumption — O(1) token size

2. New crash — +1 round

® Make sure everybody knows
® Multiple crashes in the same round — extra rounds overlap

9/13

Fault-Tolerance Cost

1. O(N) token size

® Potentially lower impact because only passive nodes forward it
® Stable storage assumption — O(1) token size

2. New crash — +1 round

® Make sure everybody knows
® Multiple crashes in the same round — extra rounds overlap

3. Failure detector messages

® Mandatory in FT algorithms
® FD monitors only succ/pred — Lower #heartbeats but slower convergence

9/13

Experiments - Setup

® Emulation
® Basic Algorithm:

® Send message — wait + receiver stub
® Compute — sleep

® Randomize #activities, message delays, crashing, who and when to crash (uniform, gaussian)

10/13

Experiments - Setup

® Emulation
® Basic Algorithm:

® Send message — wait + receiver stub
® Compute — sleep

® Randomize #activities, message delays, crashing, who and when to crash (uniform, gaussian)

® On top of two distributed algorithms:
® Chandy-Mishra routing [Chandy’82]
® Afek-Kutten-Yung self-stabilizing spanning-tree [Afek’97]
® Run on DAS-5 [Bal’'16]

10/13

—
—i

~—
n
=
3
n
&
o

1

n)
+
c
()
S
=
(o

o
x
L

,_|,|,|<‘]
, [\
, [\
7 -
J -
L T \
T
(.
([
EIEa
Crim
[] \
2 (I \
w L N
[\
.
(e
[N
:‘ -
O
Eom| | O
o o o o —
8 ¥ 8
suay01 # pwr
9p]
L
=z
2 3
o —
o —
€
5 =
S £
0 § 3
S £ 5
8 3 8
- o) 3]
- = a
=
8 [[
T

00G" L441e
00G°S440qe
00§ 14uwd
00G°G4w>
062" L441e
05 SdAqe
0G¢ 1quwd
062" S4wd
0§ L 4Axe
0G'S4Axe
06 1qwd
0G'Sqwd>

¥yT 148
¥71°G43
Yp1°14n
¥¥1°64n
8y 148
8%'S43
8y 14n
8%'S4n
9T’ 148
91'S43
oT" 14n
9T'S4n

11/13

—~
Q\
~—
n
=
3
n
&
o
1
n)
+
c
()
S
=
(o
o
x
L

00G4%e

00§wd
05¢hye
oggwd
0shxe
ogqwd

718
TN
8¥3
8N
918
9In

TN

O,

O T post

0054%e
00gwd
05¢hye
0Szwd
05A%e
ogwo

138
TN
813
8pn
918
91N

1,000

Faulty-runs

500 -

Su01 #

® |ncrease with more crashes

® Total tokens < 2N

0 FHZIHH

® Influenced by the basic algorithm

12/13

Conclusion

® Fault-tolerant variant of Safra’'s Termination Detection algorithm

® O(N) increase in token size
® Future work: use stable storage for the per process counters — O(1) token size

+1 round when a process crashes
® extra rounds for multiple crashes on the same round overlap

Can tolerate N - 1 failures

No overhead in the absence of faults (Single-round detection)

© https://github.com/gkarlos/FTSEmu

(Y] https://github.com/PerFuchs/safra-termination-detection-fault-tolerant

13/13

https://github.com/gkarlos/FTSEmu
https://github.com/PerFuchs/safra-termination-detection-fault-tolerant

	First Section
	Second Section

